
�������
� ���� � � � � � �� � � �� � �� � �

�������
� ���� � � � � � �� � � �� � �� � �

The Operations Stack for Vulnerability Management

The Problem
A major multi-national firm with tens of thousands of physical and virtual server instances running
hundreds of applications on multiple operating systems and versions across two data centers,
multiple in-office labs and server rooms, and multiple public clouds was unable to patch or make
security configuration changes across its entire estate. The system administration team relied on
SCCM plus AD Group Policy Objects to support multiple versions of Windows-based servers; puppet
with shell scripts were used for the Linux servers. On a month-over-month basis, the number of
detected vulnerabilities increased by the thousands, despite requiring dozens of labor-intensive
over-night and weekend patch windows every month. An emergency patch to address a zero-day
vulnerability took over 6 months to be deployed to 100% of servers -- both a significant risk and a
compliance violation that had to be disclosed to clients and regulators.

Among the challenges that needed to be addressed were:

 Patch application via SCCM was non-deterministic, once machines were scheduled for |
 patching then packages were transferred in the background and systems shutdown and
 rebooted unexpectedly.

 SCCM could not provide information on the real-time state of the patching process.
 It required accessing the target system to know if a patch had been successfully applied.

 Patching of Linux systems via Puppet covered only a portion of the Linux systems due to
 distribution differences and provided no error handling or restart capability.

 There was no positive indication if a machine had successfully rebooted.

 System was rate-limited to patching 300 servers (physical or virtual) per shift, with only a
 70% success rate.

 There was frequent and significant business impact to failed patching and unscheduled
 reboots, losing revenue and causing business leaders to demand exempting their critical
 systems from route patching.

The Solution
There was no single product that could address the vulnerability backlog and keep this increasingly
complex server-estate current on patches and security configuration. Careful analysis and lab
testing led to the prototype for the Operations Stack for Vulnerability Management, consisting of:

 Centrally managed, network distributed, repositories for operating system and third party
 patches and in-house application code.

 A distributed, code-driven, cloud-scale orchestration system. The installed topology of the
 system allowed for patching in multiple highly secured subnets, following mandatory
 security rules while still allowing for centralized control.

��� � � � � �� ����� � �� � � �� � � � � � � � �� �
	� �� 	�� � �

��� ��� � � � � ��� ��� �� � � �� � � �� �

ENGAGEMENTS

�������
� ���� � � � � � �� � � �� � �� � �

�������
� ���� � � � � � �� � � �� � �� � �

��� � � � � �� ����� � �� � � �� � � � � � � � �� �
	� �� 	�� � �

��� ��� � � � � ��� ��� �� � � �� � � �� �

 A client agent, written in Python
 (augmented with PowerShell for Windows
 servers) that coordinates and logs all
 patching and configuration activity and
 provides updates of system state for the
 CMDB.

 A log aggregation and analytics tool with
 custom triggers and dashboards to track
 the progress of patching and configuration
 changes in near-real-time.

The Result
Once implemented, the results were easily measured -- with many of those metrics coming directly
from the stack’s log analytics system.

 More than 99.9% of all systems were successfully patched the first time in each run.
 Real-time information allowed failures to be addressed in minutes, eliminating next-day
 production downtime

 Patching windows were reduced to 3 per
 month (non-prod followed two weeks later by
 two production patching windows scheduled
 to meet business availability schedules)
 down from the previous 12.

 Regular patching windows were shortened to
 under 6 hours (with most completing in 3
 hours).

 When faced with emergency patching to
 address a zero-day vulnerability, tens of
 thousands of systems were patched in a
 single overnight patching window.

 The number of engineers required to work
 overnight shifts to execute supervise
 patching was reduced by 75%.

 For the first time, the firm could
 demonstrate compliance with its regulatorily
 compliant patching policies across its entire
 on-premise and on-cloud system estate.

 Compliance evidence was generated on a
 self-service basis from the system, saving
 multiple person-months of annual effort
 previously required to provide documentation
 to regulators and auditors.

R
un

M
anage &

N

otify

Notification Pagerduty

D
eploy

Enterprise Platforms

Operating Systems

Compute

Storage

Databases

Identity & Access

Orchestration

TestTesting

M
onitor

Observability Splunk

Security

B
uild

Source Control Azure DevOps

Scripting / Programming

TeamsExchange /
365

Teams xMatters e-mail Slack NOC

Gemalto

Windows

HPE

EMC

Oracle

AD

Python

Locust

Ansible

Palo Alto

Nagios

Selenium

Teraform

Powershell

Git

Cisco UCS

Linux(Suse)

Cache

Pure

Open LDAP
(IPA)

G-Suite

Tripwire

SCCM

HP Loadrunner

Saltstack

Java

WSUS

Dell

Linux(Red Hat)

Postgres

HP Unity

Mobile Iron

ServiceNow

Symantec

AppDynamics

IBM Rational

Puppet

Go

Satellite

IBM

Linux(Debian)

IRIS

3PAR

Cyber Ark

SAP

Carbon Black

Azure Log
Analytics

JMeter

deployTool

Clojure

SVN

Lenovo

FreeBSD

MongoDB

NetApp

IBM ISAM

QLIK

CrowdStrike

Prometheus

JUnit

Custom

Ruby

Artifactory

White Box

Unix

IBM DB2

White Box

SiteMinder

Cloud AWS Azure GCP Cisco UCS Digital Ocean VMware

